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There has recently been an appreciable increase of interest in the study of equilibrium 
states of electron beams which are decompensated or partially compensated by ions, and con- 
fined by a magnetic field. In addition to the programs listed in [i] which initiated this 
interest, there are problems of the adiabatic acceleration of electron and ion beams [2], 
the recovery of their energy, and compression. Fotin et al. [3] treated one aspect of the 
analysis of decompensated electron beams by considering their possible application to the 
problem of the transport of electrical energy on a commercial scale by using electron beams. 
The use of decompensated beams opens up the possibility of transporting electromagnetic 
energy in the form of the Poynting flux, as in an ordinary coaxial cable. In this case the 
ratio of the kinetic and potential energies is of definite concern in the analysis of states. 
The limiting currents of charged beams in an infinitely strong magnetic field were investi- 
gated in [4-7]. Zharinov et al. [6] analyzed states and drew certain conclusions about the 
transformation of energy from electromagnetic to kinetic and back. They showed that a de- 
compensated electron beam can be decelerated or accelerated in an equipotential beam llne 
by a suitable choice of beam profile, determined by the external magnetic field. In a mag- 
netic field of finite strength electrons have an additional degree of freedom which permits 
their rotation about the magnetic lines of force. It is of interest to analyze equilibrium 
states and energy diagrams of charged beams in a magnetic field, taking account of the trans- 
formation of electromagnetic energy into translational and rotational kinetic energy. We 
consider an electron beam injected from a cathode of radius r K and accelerated across a po- 
tential difference ~< in a magnetic field H<. The total potential difference between the 
cathode and the beam llne is ~R' The beam is ejected into a beam line of radius R with an 
accompanying magnetic field H. We analyze equilibrium states at large distances from the 
point of injection or for an adiabatically slow variation of H along the length of the beam. 
We do not consider the stability of the equilibrium states. 

Nonrelativistic Case. The equation of motion of an edge electron in the drift region 
has the form 

ro = ~IE~ + co'~ro - -  o~C%ro, ( 1 )  

where ro is the radius of the beam, E r is the radial electric field of the beam, ~ -- e/m is 
the specific charge of the electron, ~c = nH/c is the cyclotron frequency, ~ is the angular 
velocity given by the Bush theorem 

2 2 r = (o~c/2) ( l  ar~ / ro )  , (2) 

where a = HK/H, and r K is the radius of the beam at the cathode. 

It follows from Eq. (2) that for 2 2 ~rK/rz << I the angular velocity of the electrons is 
determined solely by the magnetic field intensity H. In this case Eq. (i) describes Brillouin 
flow in which the longitudinal velocity and the electron density are constant along the ra- 

2 m dius [8]. For arK/ro ~ 1 the rotational energy approaches zero. In this case the longi- 
tudinal velocity along the axis is somewhat lower at the edge because of the potential drop 
on the beam. This drop can be neglected when 21n(R/ro) >> i. Satisfying at least one of 

2 2 21n(R/ro) >> i is equivalent to satisfying the inequality the inequalities ~rK/ro << 1 or 

We consider beams for which Eq. (3) is valid, i.e. beams in which the density and longitudi- 
nal velocity of the electrons are constant along a radius. This condition is satisfied 
either by sufficiently narrow beams or beams having an appreciable rotational energy. From 
Gauss's theorem the radial electric field E r = 21/vzro, where I is the beam current and v z 
is the longitudinal velocity of the electrons. Substituting the value of the radial field 
into (I), and using (2), we obtain the following expression for the equilibrium radius of 
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the beam by set t ing ro = O: 

where  

2v.  ~ 
z ~ - -  ~ z i - ' ~ l  = O, 

ale 
(4) 

x = rolr . ;  to~ = 41i l tv , r~ .  (4 ' ) 

We note that the rotation of electrons gives rise to a diamagnetic field which affects 
the rotational energy. The diamagnetism is small if 

t .  (5) 
Taking account  of  the space charge l i m i t a t i o n  of  the c u r r e n t ,  c o n d i t i o n  (5) i s  always s a t i s -  
f i e d  in the nonrelativistic case. 

For a constant longitudinal velocity and density of the electrons along a radius the 
law of conservation of the total energy flux through a cross section of the beam line has 
the form 

R 

I (v' r ~E,He2~r dr (6) 
e 

where Ho is the component of the self-magnetic field of the beam. According to (2), the ro- 
tational velocity averaged over the cross section is 

= - (7  > 

The first term in (6) corresponds to the transport of kinetic energy by the beam, and the 
second term to the transport of electromagnetic energy. Performing the integration in (6), 
and transforming by using (4'), we obtain 

- + = r + 4 1 .  ( s )  

Equation (8) is valid only for nonpulsed beams, since the component v r has been eliminated. 
Using ~4), (7), and (8), we obtain the dependence of the equilibrium radius x on I, ~R, R, 
r~, and a in the form 

f -B ~(x--=) I--B (9) 

where B = ~r~/ ( i6~R) .  

Equation (9) is illustrated graphically in Fig. i for R/r K = i0, a = 0, and B = 1.63 x 
10 -2 , 8.4 • i0-', 5 x i0 -s, 4.8 x l0 -s, and 3.3 x I0 -s for curves 1-5 respectively. Analysis 
of Eq. (9) for x 2 >> a shows that for B>~r2/2R~, which is equivalent to R~e/2~ ~2~ a there 
are two values of the equilibrium radius for a given current. This case corresponds to 
curves 1-3 of Fig. i. 

When the current is increased and B is fixed, one of the equilibrium radii is increased, 
and the other is decreased. At the maximum current ~ax the two radii coincide. If B <~. 
(r~/3Ri)e */s or R~c/2e*/' ~ ~2~R/3 , the equilibrium radius increases monotonically with 
increasing beam current, as shown by curve 5. Finally, in the range r~/2R" > B > (r~/3R z) 
e*/' for i < 1/9 there are three values of the equilibrium radius (curve 4). 

The extreme values of the currents for a fixed B and an arbitrary a are related to the 
equilibrium radius by the expression 

/ 2= ~ " R ~,/2[ xs_= 3(i+41n R hl-3m. 

For .x 2 >> a and x ~.~ (RlrK)e-*/; Eq. (i0) determines the value of ima x'B , and for x > (R/r K) 
e -*/6 it determines the value of imBin. The parameter B is related to x by the expression 
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The maximum value of the current i x for a fixed radius, determined from the condition 
max 

di/dB = 0, is 

/~ax= ~(x s -~ a)[(x~_ a)a_ (x ~ --i-zt)(t-~-4 In ~%)] -I 

at 

= T2 + " (zz) 

Curves 1 and 2 in Fig. 2 are plots of i x and i B for a = 0. The maximum value of i9 is 
m a  e 

reached  a t  x ffi (R/ r~)e  - ~ / 6 .  At smal l  x t~e  two curves  p r a c t i c a l l y  c o i n c i d e ,  bu t  f o r  x 
(R/rK)e -~/6 they differ appreciably from one another. The right-hand branch of the i~ curve, 
shown dashed, corresponds to the values of ~in" 

We turn now to an analysis of the energy state of the electron beam. Substituting (ii) 
X . into (7), we obtain the value of the rotational energy for currents equal to ima x. 

2 ~ [(z ~ -- =) + + 4 ~, = -~, (Z --~) (x' + =) (I I, z~)]-1," (12) 

where ~8 =~/2N. According to (12) the rotational energy approaches zero as x = + a. It 
follows from (ii) that this is possible for B ~ -. The maximum value of 90 is reached at 
x = R/r<. If R/r< >> e, the maximum rotational energy is ~R/3. 

An important characteristic of the state of an electron beam is the ratio of the klnet- 
ic and potential energies of the beam. From (3) and (8) 

J 
where ~K =(~-~)/2~ , which determines the ratio of the kinetic to the total energy as a 
function of the equilibrium radius of the beam. In regimes of the type 1-3 (Fig. i) where 
two values of the equilibrium radius are possible, Eq. (13) shows that the larger of these 
corresponds to the smaller kinetic energy. 

The state diagrams relating the beam current to ~s/~m can be obtained from Eqs. (9) and 
(13) by eliminating x. These equations cannot be solved analytically in general form. 
Curves 1-4 of Fig. 3a ahow a graphical solution of these equations for B = 3.3 x i0 -s, 5 • 
10 -3 , 8.4 x i0 -s, and 1.63 x l0 -2 respectively. It should be noted that each value of the 
current along a curve corresponds to a definite value of the equilibrium radius, which varies 
from point to point in accordance with Eq. (9). The ratio ~,~l~a for the same B is determined 
by the geometry of the system, i.e., by to/r< and R/r . For example, for an electron beam 
with a current i = 0.044 propagating along a slowly varying magnetic field, the equilibrium 
radius changes with a change in the kinetic energy. Depending on the initial conditions, the 
kinetic energy of the beam may increase and the equilibrium radius decreases (the upper left- 
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hand branch of the curve in Fig. 3b with B = 5 x i0-', 8.4 x i0 -s, 1.64 x 10 -2 , 8.4 x i0-', 
5 x 10 -s, and 3.3 x i0 -s at points 2, 3, 4, 3, 2, and 1 respectively) or the kinetic energy 
and the beam radius may both increase (right-hand branch). Since the kinetic energy of the 
longitudinal motion ~!I = ~/2~ is 

~R x ~ j 

on the Upper left-hand branch the increase in kinetic energy is the result of an increase 
in the longitudinal velocity of the electrons, while on the right hand branch it is the 
result of an increase in the rotational energy. The lower left-hand branch of the curve 
shows that an increase in the kinetic energy is accompanied by an increase in the radius 
and a substantial decrease in the longitudinal velocity of the electrons. 

The shape of the beam in an adiabatically slowly varying magnetic field (~c << m~) can 
be obtained by solving Eq. (9) for x. Curves 1-4 of Fig. 4 show the dependence of x on B 
for a : 0 and i : I0-*, 8 x 10 -2 , 6 x 10 -2 , and 4 • 10 -2 respectively. The value of dx/dB 
for = = 0 is 

--dS = " ~  t - -  3 B x  2 2 1 n ~ + t  t--2Bx ~ 31nxrRR + 1  

,uoo.on. ,)]-' .n, ')l o oo = v .  

of Fig. 4. If a beam with a current i < 1/9 is injected into a beam line with B < (r~/3R 2) 
e I/s, then for a magnetic field which increases slowly along the length, the beam must reach 
the state with the smaller radius. For a specific field the minimum value of the radius is 
found from the condition dx/dB = 0. After this the radius increases somewhat. The maximum 
value of B for which an equilibrium state of the beam still exists is determined from the 
condition dx/dB = ~. At this point the two equilibrium radii coincide. If the field is de- 
creased, the beam may make a transition to the state with the larger radius, or return to 
the state with the smaller radius. If the magnetic field is increased when i>i/9, the 
radius of the beam at first decreases, and then increases. The minimum value of the radius 
is determined from the condition dx/dB = O. The behavior of the beam for finite u does not 
differ quantitatively from the behavior for u = 0. In this case all the curves are displaced 
along the x axis by ~. 

Relativistic Case. By analogy with the case considered, the equilibrium condition in 
the relativistic case is written in the form 

t + B~ (~ -~  = 2~A= ~ L~ - l + Bo ~ j (14) 
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2 2 2. where Be ~ r iA = Ie/meS; y (l -- ~2)-1/~; 62 = ~ q_ ~. 

Making the same assumptions as in the nonrelativistic case, we obtain for the law of conser- 
vation of the total energy flux 

[( ) ] ") 
where 7n = I +e~R/rac~-; e~a is the total energy of the electrons. Eliminating ~z from 
(14) and (15), we obtain 

i A 
Bo - =)"- 

( 2  - - 
2 x  ~ t q- B e x- ~ j 

where 

, B e ..... x 2  4 x  ~ i ~ -  B e [ x" 

The s o l i d  and open c u r v e s  o f  F i g .  5 show the  dependence  o f  i A on x f o r  YR = 3 . 1  and 4 . 1  
r e s p e c t i v e l y .  The p i c t u r e  remain s  q u a l i t a t i v e l y  the  same as b e f o r e  -- f o r  s u f f i c i e n t l y  l a r g e  
m a g n e t i c  f i e l d s  ( l a r g e  B c)  t h e r e  are  two e q u i l i b r i u m  r a d i i  o f  the  beam. As B c i s  i n c r e a s e d ,  
b o t h  r a d i i  i n c r e a s e ,  and i n  a c e r t a i n  range  o f  B c t h e r e  are  t h r e e  v a l u e s  o f  the  e q u i l i b r i u m  
r a d i i  (B c = 0 . 2 7 ,  0 . 0 1 ,  0 . 0 9 ,  0 . 0 3 ,  0 . 0 9 ,  and 0 . 2 7  f o r  c u r v e s  1 -6  r e s p e c t i v e l y ) .  I f  B c i s  
s m a l l  enough ,  the  beam r a d i u s  i n c r e a s e s  m o n o t o n i c a l l y  w i t h  i n c r e a s i n g  c u r r e n t .  The maximum 
v a l u e  o f  the  c u r r e n t  i s  r each ed  when t h e  beam c o m p l e t e l y  f i l l s  t h e  beam l i n e .  F i g u r e  6 shows 
the  c u r r e n t  as  a f u n c t i o n  o f  the  e l e c t r o m a g n e t i c  e n e r g y  t r a n s p o r t e d  by the  beam (B c ffi 0 . 0 1 ,  
0 . 0 9 ,  0 . 2 7 ,  0 . 0 1 ,  0 . 0 9 ,  and 0 . 2 7  f o r  c u r v e s  1 -6  r e s p e c t i v e l y )  f o r  the  same v a l u e s  o f  YR" I t  
i s  c l e a r  from F i g .  6 t h a t  t o  each  r a d i u s  t h e r e  c o r r e s p o n d s  a d e f i n i t e  e l e c t r o m a g n e t i c  e n e r g y  
whose  magni tude  depends  r a t h e r  s t r o n g l y  on the  a p p l i e d  m a g n e t i c  f i e l d .  I t  s h o u l d  be n o t e d  
t h a t  i n  the  r e l a t i v i s t i c  c a s e  the  c o n d i t i o n  f o r  s m a l l  d i a m a g n e t i s m  i s  s a t i s f i e d  o n l y  f o r  
c u r r e n t  i A << 8y o r  f o r  s u f f i c i e n t l y  narrow beams -- 21n(R/xR~)  >> 1.  T h e r e f o r e ,  t h e  quan- 
t i t a t i v e  r e s u l t s  i n  the  r e l a t i v i s t i c  c a s e  a r e  a p p r o x i m a t e .  

In  c o n c l u s i o n  we n o t e  t h e  f o l l o w i n g :  

1. Our a n a l y s i s  o f  t h e  e q u a t i o n s  o f  m o t i o n  and the  law o f  c o n s e r v a t i o n  o f  the  t o t a l  
beam e n e r g y  f l u x  i n  a l o n g i t u d i n a l  m a g n e t i c  f i e l d  shows t h a t  f o r  a f i x e d  m a g n e t i c  f i e l d  
t h e r e  are  maximum c u r r e n t s  whose magn i tude  i n c r e a s e s  w i t h  a d e c r e a s e  o f  t h e  f i e l d .  T h i s  i s  
r e l a t e d  t o  an i n c r e a s e  i n  beam r a d i u s  and a t r a n s f o r m a t i o n  o f  p a r t  o f  the  p o t e n t i a l  e n e r g y  
o f  the  e l e c t r o n s  i n t o  k i n e t i c  e n e r g y ,  w h i c h d e c r e a s e s  t h e  s p a c e  charge  d e n s i t y .  In a d d i t i o n ,  
f o r  a f i x e d  beam r a d i u s  t h e r e  a r e  maximum c u r r e n t s  which  f o r  s m a l l  v a l u e s  o f  the  r a d i u s  c o -  
i n c i d e  w i t h  the  maximum c u r r e n t s  f o r  a f i x e d  m a g n e t i c  f i e l d ,  w h i l e  f o r  l a r g e r  r a d i i  may sub-  
s t a n t i a l l y  e x c e e d  them ( F i g .  2 ) .  
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2, The r o t a t i o n a l  energy of  beam e l e c t r o n s  i n c r e a s e s  wi th  i n c r e a s i n g  c u r r e n t ,  and may 
reach  an a p p r e c i a b l e  f r a c t i o n  of  the  t o t a l  energy .  The r o t a t i o n a l  energy d e c r e a s e s  wi th  an 
increhse in the magnetic field, and approaches zero in the limit of an infinitely large field. 

3. State diagrams relating the energy characteristics of the beam, the current, and 
the geometrical parameters enable one to distinguish three regions differing in the initial 
state, The transition from one region to another for an adiabatically slow variation of the 
magnetic field enables one to produce different transformations of the energy of the system, 
ensuring an adiabatic acceleration and deceleration, and also an appreciable compression of 
the beam within the framework of the model considered. 

The authors thank A. V. Zharlnov for posing the problem and for a discussion of the 
paper. 
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NUMERICAL CALCULATIONS OF STATIONARY STATES OF MAGNETIC 

SELF-INSULATION OF VACUUM LINES 

G. G. Golovin, A. V. Gordeev 
B. D. Korolev, V. P. Smirnov, 
and A. S. Chernenko 

UDC 533.916 : 517.949.8 

Magnetic self-insulation of vacuum gaps permits attaining electric fields of > 104 
V/cm due to screening of the negative electrode by a layer of magnetized electrons [i]. As 
a result, it is possible to transmit energy fluxes along vacuum lines and to concentrate 
them to densities > 10 *2 W/cm 2, which finds application, in particular, in large-scale sys- 
tems, for example, Angara-5 [2]. In spite of the broad practical application of self-lnsu- 
lation, there is as yet no complete theory of the equilibrium of electron layers. The best 
developed models are the hydrodynamic Brillouin model and the kinetic model with one type 
of trajectory. The hydrodynamic model, which does not tale into account the pressure in 
the electron layer (Brillouin flow), describes well cylindrical lines. The more realistic 
kinetic model, which takes into account one type of electron trajectory, predicts the exis- 
tence of equilibrium configurations only for flat and cylindrical lines and, in addition, 
in the latter, the external electrode must be negative [3]. The important case of converg- 
ing conical lines, which is important for concentrating energy flux, is described only ap- 
proximately by the hydrodynamic model. In the self-consistent kinetic as well as in the 
single-frequency approximations, there are no solutions, which is a result of the dependence 
of the azimuthal magnetic field on the distance to the apex of the cone [4]. Great diffi- 
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